Article: PDF
DOI: 10.51762/1FK-2021-26-02-06
Abstract: The article explores the ways of making emotional lexemes semantic description consistent with interpretative intuition of the ordinary language speaker. The research novelty is determined by the fact that it is based on the data retrieved from the emotional assessment of 3920 internet-texts in Russian made by informants via using a specially designed computer interface. When applied this interface, we can aggregate the weight of 8 emotions (distress, enjoyment, anger, surprise, shame, excitement, disgust, fear) in text. Thus, the data we have used for this publication includes two sets of 150 internet-texts assessed by 2000 informants with the highest score of emotions of distress or anger. The scope of the study covers the semantics of two mentioned above lexemes (grust’ and gnev) analyzed through the prism of collective introspection of informants. The article purpose is to discuss the case when a semantic description of emotives is given by an expert, which largely uses “the best texts” of corresponding emotions, according to the collective opinion of informants. Our methods include psycholinguistic experiment, corpus and semantic analysis. The research led us to three main conclusions. Firstly, the semantic descriptions of emotives grust’ and gnev obtained in proposed way represent prototypical scenarios of living an emotion in social context and take into account not only the introspective sensations of an expert-linguist, but the interpretative strategies of language users. Secondly, such semantic explanation provides us with keys for explaining, why machine learning technologies are better at detecting anger than sadness in text. Finally, it creates a precedent in using new technologies for making an ecological semantic description of emotive vocabulary. The research results can find application in emotiology, lexicographic practice and didactics.
Key words: Emotives; emotions; distress; anger; emotional text analysis; emotion detection; semantic description; emotional annotation; corpus analysis.

Для цитирования:

Колмогорова, А. В. Детектирование эмоций и семантика эмотивов: грусть и гнев в аннотированной выборке текстов / А. В. Колмогорова // Philological Class. – 2021. – Vol. 26 ⋅ №2. – С. 78-89. DOI 10.51762/1FK-2021-26-02-06.

For citation

Kolmogorova, A. V. (2021). Emotion Detection and Semantics of Emotives: Distress and Anger in Annotated Text Dataset. In Philological Class. 2021. Vol. 26 ⋅ №2. P. 78-89. DOI 10.51762/1FK-2021-26-02-06.

About the author(s) :

Anastasia V. Kolmogorova
Siberian Federal University (Krasnoyarsk, Russia)

Publication Timeline:

Date of receipt: 30.05.2021; date of publication: 30.06.2021.


Apresyan, Yu. D. (1995). Izbrannye yrudy. Tom II. Integral’noe opisanie yazyka i sistemnaya leksikografiya [Selected Works. Volume II. Integral Description of Language and Systemic Lexicography]. Moscow, Yazyki russkoi kul’tury. 767 p.
Babenko, L. G. (1989). Leksicheskie sredstva oboznacheniya emotsiy v russkom yazyke [Lexical Means of Emotion Denotation in Russian]. Sverdlovsk, Izdatel’stvo Ural’skogko universiteta. 184 p.
Vezhbitskaya, A. (1999). «Grust’» i «gnev» v russkom yazyke: neuniversal’nost’ tak nazyvaemykh «bazovykh chelovecheskikh emotsiy» [Distress and Anger in Russian: about the Non-Universality of Basic Human Emotions]. In Semanticheskie universalii i opisanie yazykov. Moscow, Yazyki russkoi kul’tury, pp. 503‒526 p.
Dimitrova, E. V. (2001). Yazykovye sredstva translyatsii emotivnykh smyslov russkogo kontsepta «toska» vo frantsuzskuyu lingvokul’turu [Linguistic Means of Translating the Emotive Meanings of the Russian Concept Toska into the French Lingvoculture]. Dis. … kand. filol. nauk. Volgograd. 173 p.
Zhura, V. V. (2000). Emotsional’nyi deiksis v verbal’nom povedenii angliiskoi yazykovoi lichnosti (na materiale angloyazychnoi khudozhestvennoi literatury) [Emotional Deixis in the Verbal Behavior of an English Language Personality (Based on the Material of English-Language Fiction)]. Dis. … kand. filol. nauk. Volgograd. 200 p.
Zaliznyak, A. A. (2006). Mnogoznachnost’ i sposoby ee predstavleniya [Polysemanticity and Ways of Its Manifestation]. Moscow, Yazyki slavyanskikh kul’tur. 676 p.
Zayachkovskaya, O. O. (2015). Kontseptual’nyi analiz semantiki emotsional’nogo leksikona [Conceptual Analysis of Emotional Lexicon Semantics]. In Metody kognitivnogo analiza semantiki slova: komp’yuterno-korpusnyi podkhod. Moscow, Yazyki slavyanskoi kul’tury, pp. 243‒268.
Kolmogorova, A. V. (2019). Lingvistika kognitivnaya i ekologichnaya: k voprosu o perspektivakh primeneniya kontseptsii kognitivnoi ekologii v lingvisticheskikh issledovaniyakh [When Cognitive Linguistics Is Ecological Too: on the
Question of the Prospects for the Application of the Concept of Cognitive Ecology in Linguistic Research]. In Ekologiya yazyka i kommunikativnaya praktika. No. 3, pp. 19‒28.
Bally, Ch. (1921). Traité de stylistique française. Heidelberg, 1921. 349 p.
Cowley, S. J. (2016). Changing the Idea of Language: Nigel Love’s Perspective. In Language Sciences. Vol. 61, pp. 43–55. DOI:
Cowley, S. J. (2004). Contextualizing Bodies: How Human Responsiveness Constrains Distributed Cognition. In Special issue on Integrational Linguistics and Distributed Cognition. Language Sciences. No. 26/6, pp. 565‒591.
Ekman, P. (1992). An Argument for Basic Emotions. In Cognition & Emotion. No. 6 (3–4), pp. 169–200. DOI:
Hacking, I. (1999). The Social Construction of What? Oxford University Press. 278 p.

Kolmogorova, A. V., Kalinin, A. A., Malikova, A. V. (2020). Non-discrete Sentiment Dataset Annotation: Case Study
for Lövheim Cube Emotional Model. In Communications in Computer and Information Science. Vol. 1242, pp. 154‒164. DOI:
10.1007/978-3- 030-65218-0_12.
Kolmogorova, A. V., Kalinin, A. A., Malikova, A. V. (2020). The Problem of Retrieving Neutral Classes of Texts in Russian in Multiclass Emotional Text Analysis. In EUR Workshop Proceedings. Vol. 28522020.
Kull, K. (2019). Steps towards the Natural Meronomy and Taxonomy of Semiosis: Emotin between Index and Symbol? In Sign Systems Studies. No. 47 (1/2), pp. 88–104. DOI:
Lövheim, H. (2012). A New Three-Dimensional Model for Emotions and Monoamine Neurotransmitters. In Medical Hypotheses. Vol. 78, pp. 341–348. DOI:
Mashal, S. X., Asnani, K. (2017). Emotion Intensity Detection for Social Media Data. In Proceedings of the 2017 International Conference on Computing Methodologies and Communication (ICCMC), pp. 155–158.
Morris, Ch. W. (1938). Foundations of the Theory of Signs. In International encyclopedia of unified science. Vol. 1. No. 2. Chicago, The University of Chicago Press.
Plutchik, R. (1984). Emotions: A General Psychoevolutionary Theory. In Scherer, K., Ekman, P. (Eds.). Approaches to emotion. Hillsdale, Lawrence Erlbaum Associates, pp. 197–219. DOI:
Tomkins, S. S. (1962). Affect Imagery Consciousness. Vol. 1: The Positive Affects. New York, Springer. 588 p.
Vasilyuk, F. E. (2016). Semiotics and the Technique of Empathy. In Journal of Russian & East European Psychology. No. 53 (2), pp. 56–79. DOI: